FA-Seg: A Fast and Accurate Diffusion-Based Method for Open-Vocabulary Segmentation
FA-Seg: A Fast and Accurate Diffusion-Based Method for Open-Vocabulary Segmentation
Open-vocabulary semantic segmentation (OVSS) aims to segment objects from arbitrary text categories without requiring densely annotated datasets. Although contrastive learning based models enable zero-shot segmentation, they often lose fine spatial precision at pixel level, due to global representation bias. In contrast, diffusion-based models naturally encode fine-grained spatial features via attention mechanisms that capture both global context and local details. However, they often face challenges in balancing the computation costs and the quality of the segmentation mask. In this work, we present FA-Seg, a Fast and Accurate training-free framework for open-vocabulary segmentation based on diffusion models. FA-Seg performs segmentation using only a (1+1)-step from a pretrained diffusion model. Moreover, instead of running multiple times for different classes, FA-Seg performs segmentation for all classes at once. To further enhance the segmentation quality, FA-Seg introduces three key components: (i) a dual-prompt mechanism for discriminative, class-aware attention extraction, (ii) a Hierarchical Attention Refinement Method (HARD) that enhances semantic precision via multi-resolution attention fusion, and (iii) a Test-Time Flipping (TTF) scheme designed to improve spatial consistency. Extensive experiments show that FA-Seg achieves state-of-the-art training-free performance, obtaining 43.8% average mIoU across PASCAL VOC, PASCAL Context, and COCO Object benchmarks while maintaining superior inference efficiency. Our results demonstrate that FA-Seg provides a strong foundation for extendability, bridging the gap between segmentation quality and inference efficiency. The source code will be open-sourced after this paper is accepted.
Quang-Huy Che、Vinh-Tiep Nguyen
计算技术、计算机技术
Quang-Huy Che,Vinh-Tiep Nguyen.FA-Seg: A Fast and Accurate Diffusion-Based Method for Open-Vocabulary Segmentation[EB/OL].(2025-07-15)[2025-07-17].https://arxiv.org/abs/2506.23323.点此复制
评论