|国家预印本平台
首页|Natural language processing for African languages

Natural language processing for African languages

Natural language processing for African languages

来源:Arxiv_logoArxiv
英文摘要

Recent advances in word embeddings and language models use large-scale, unlabelled data and self-supervised learning to boost NLP performance. Multilingual models, often trained on web-sourced data like Wikipedia, face challenges: few low-resource languages are included, their data is often noisy, and lack of labeled datasets makes it hard to evaluate performance outside high-resource languages like English. In this dissertation, we focus on languages spoken in Sub-Saharan Africa where all the indigenous languages in this region can be regarded as low-resourced in terms of the availability of labelled data for NLP tasks and unlabelled data found on the web. We analyse the noise in the publicly available corpora, and curate a high-quality corpus, demonstrating that the quality of semantic representations learned in word embeddings does not only depend on the amount of data but on the quality of pre-training data. We demonstrate empirically the limitations of word embeddings, and the opportunities the multilingual pre-trained language model (PLM) offers especially for languages unseen during pre-training and low-resource scenarios. We further study how to adapt and specialize multilingual PLMs to unseen African languages using a small amount of monolingual texts. To address the under-representation of the African languages in NLP research, we developed large scale human-annotated labelled datasets for 21 African languages in two impactful NLP tasks: named entity recognition and machine translation. We conduct an extensive empirical evaluation using state-of-the-art methods across supervised, weakly-supervised, and transfer learning settings.

David Ifeoluwa Adelani

非洲诸语言

David Ifeoluwa Adelani.Natural language processing for African languages[EB/OL].(2025-06-30)[2025-07-25].https://arxiv.org/abs/2507.00297.点此复制

评论