|国家预印本平台
首页|The set-theoretic Kaufmann-Clote question

The set-theoretic Kaufmann-Clote question

The set-theoretic Kaufmann-Clote question

来源:Arxiv_logoArxiv
英文摘要

Let $\mathsf{M}$ be the set theory obtained from $\mathsf{ZF}$ by removing the collection scheme, restricting separation to $Δ_0$-formulae and adding an axiom asserting that every set is contained in a transitive set. Let $Π_n\textsf{-Collection}$ denote the restriction of the collection scheme to $Π_n$-formulae. In this paper we prove that for $n \geq 1$, if $\mathcal{M}$ is a model of $\mathsf{M}+Π_n\textsf{-Collection}+\mathsf{V=L}$ and $\mathcal{N}$ is a $Σ_{n+1}$-elementary end extension of $\mathcal{M}$ that satisfies $Π_{n-1}\textsf{-Colelction}$ and that contains a new ordinal but no least new ordinal, then $Π_{n+1}\textsf{-Collection}$ holds in $\mathcal{M}$. This result is used to show that for $n \geq 1$, the minimum model of $\mathsf{M}+Π_n\textsf{-Collection}$ has no $Σ_{n+1}$-elementary end extension that satisfies $Π_{n-1}\textsf{-Collection}$, providing a negative answer to the generalisation of a question posed by Kaufmann.

Zachiri McKenzie

数学

Zachiri McKenzie.The set-theoretic Kaufmann-Clote question[EB/OL].(2025-07-01)[2025-07-21].https://arxiv.org/abs/2507.01176.点此复制

评论