Loose rectangular diagram, multi-crossing number, and arc index
Loose rectangular diagram, multi-crossing number, and arc index
For a non-split multi-crossing diagram $D$ of a link $L$ we show that $α(L)-2 \leq c_2(D) + \sum_{n> 2}(2n-4)c_n(D)$ holds. Here $α(L)$ is the arc index and $c_n(D)$ is the number of $n$-crossings of $D$. This generalizes and subsumes many known inequalities related to multi-crossing numbers. In the course of proof, we introduce a notion of loose rectangular diagram and show that a loose rectangular diagram can be converted to usual rectangular diagram preserving its arc index.
Tetsuya Ito
数学
Tetsuya Ito.Loose rectangular diagram, multi-crossing number, and arc index[EB/OL].(2025-07-02)[2025-07-16].https://arxiv.org/abs/2507.01404.点此复制
评论