|国家预印本平台
首页|Existence of normalized solutions to nonlinear Schrödinger equations on lattice graphs

Existence of normalized solutions to nonlinear Schrödinger equations on lattice graphs

Existence of normalized solutions to nonlinear Schrödinger equations on lattice graphs

来源:Arxiv_logoArxiv
英文摘要

In this paper, using a discrete Schwarz rearrangement on lattice graphs developed in \cite{DSR}, we study the existence of global minimizers for the following functional $I:H^1\left(\mathbb{Z}^N\right)\to \R$, $$I(u)=\frac{1}{2} \int_{\mathbb{Z}^N}|\nabla u|^2 \,dμ-\int_{\mathbb{Z}^N} F(u)\, dμ,$$ constrained on $S_m:=\left\{u \in H^1\left(\mathbb{Z}^N\right) \mid\|u\|_{\ell^2\left(\mathbb{Z}^N\right)}^2=m\right\}$, where $N \geq 2$, $m>0$ is prescribed, $f \in C(\mathbb{R}, \mathbb{R})$ satisfying some technical assumptions and $F(t):=\int_0^t f(τ) \,dτ$. We prove the following minimization problem $$ \inf_{u \in S_m} I(u) $$ has an excitation threshold $m^*\in [0,+\infty]$ such that \begin{equation*} \inf_{u \in S_m} I(u)<0 \quad \text{if and only if } m>m^*. \end{equation*} Based primarily on $m^* \in (0,+\infty)$ or $m^*=0$, we classify the problem into three different cases: $L^2$-subcritical, $L^2$-critical and $L^2$-supercritical. Moreover, for all three cases, under assumptions that we believe to be nearly optimal, we show that $m^*$ also separates the existence and nonexistence of global minimizers for $I(u)$ constrained on $S_{m}$.

Zhentao He、Chao Ji、Yifan Tao

物理学

Zhentao He,Chao Ji,Yifan Tao.Existence of normalized solutions to nonlinear Schrödinger equations on lattice graphs[EB/OL].(2025-07-02)[2025-08-02].https://arxiv.org/abs/2507.01591.点此复制

评论