|国家预印本平台
首页|Muckenhoupt-weighted $L_q(L_p)$ boundedness for time-space fractional nonlocal operators

Muckenhoupt-weighted $L_q(L_p)$ boundedness for time-space fractional nonlocal operators

Muckenhoupt-weighted $L_q(L_p)$ boundedness for time-space fractional nonlocal operators

来源:Arxiv_logoArxiv
英文摘要

Based on the $ϕ(Δ)$-type operator studied by Kim \cite[\emph{Adv.~Math.}]{Kim2}, where $ϕ$ is a Bernstein function, we establish weighted $L_{q}(L_{p})$ estimates for solutions to the following fractional evolution equation: $$ \partial_{t}^αw(t,x) = ϕ(Δ)w(t,x) + h(t,x), \quad t > 0, \; x \in \mathbb{R}^{d}, $$ where $\partial_{t}^α$ denotes the Caputo derivative of $0 < α< 1$. To be specific, for all $1 < p, q < \infty$, we demonstrate that $$ \int_{0}^{\infty} \left( \int_{\mathbb{R}^{d}} \left| ϕ(Δ)w \right|^{p} μ_{1}(x) \, dx \right)^{\frac{q}{p}} μ_{2}(t) \, dt \leq C \int_{0}^{\infty} \left( \int_{\mathbb{R}^{d}} |h|^{p} μ_{1}(x) \, dx \right)^{\frac{q}{p}} μ_{2}(t) \, dt, $$ where $μ_{1}(x) \in A_{p}(\mathbb{R}^{d})$ and $μ_{2}(t) \in A_{q}(\mathbb{R})$ are \emph{Muckenhoupt} weights.~Our proof relies on harmonic analysis techniques, using fundamental tools including the \emph{Fefferman-Stein} inequality and \emph{Hardy-Littlewood} maximal estimates in weighted $L_q(L_p)$ spaces, and \emph{sharp function} estimates for solution operators. In particular, our results extend the work of Han and Kim (2020, J. Differ. Equ.,269:3515-3550) and complement the work of Dong (2023, Calc. Var. Partial Differ. Equ., 62:96).

Yong Zhen Yang、Yong Zhou

数学

Yong Zhen Yang,Yong Zhou.Muckenhoupt-weighted $L_q(L_p)$ boundedness for time-space fractional nonlocal operators[EB/OL].(2025-07-02)[2025-07-16].https://arxiv.org/abs/2507.01890.点此复制

评论