|国家预印本平台
首页|Some Turán-type results for signless Laplacian spectral radius

Some Turán-type results for signless Laplacian spectral radius

Some Turán-type results for signless Laplacian spectral radius

来源:Arxiv_logoArxiv
英文摘要

Half a century ago, Bollobás and Erdős [Bull. London Math. Soc. 5 (1973)] proved that every $n$-vertex graph $G$ with $e(G)\ge (1- \frac{1}{k} + \varepsilon )\frac{n^2}{2}$ edges contains a blowup $K_{k+1}[t]$ with $t=Ω_{k,\varepsilon}(\log n)$. A well-known theorem of Nikiforov [Combin. Probab. Comput. 18 (3) (2009)] asserts that if $G$ is an $n$-vertex graph with adjacency spectral radius $λ(G)\ge (1- \frac{1}{k} + \varepsilon)n$, then $G$ contains a blowup $K_{k+1}[t]$ with $t=Ω_{k,\varepsilon}(\log n)$. This gives a spectral version of the Bollobás--Erdős theorem. In this paper, we systematically explore variants of Nikiforov's result in terms of the signless Laplacian spectral radius, extending the supersaturation, blowup of cliques and the stability results.

Jian Zheng、Yongtao Li、Yi-Zheng Fan

数学

Jian Zheng,Yongtao Li,Yi-Zheng Fan.Some Turán-type results for signless Laplacian spectral radius[EB/OL].(2025-07-03)[2025-07-16].https://arxiv.org/abs/2507.02263.点此复制

评论