The $μ-$invariant of fine Selmer groups associated to general Drinfeld modules
The $μ-$invariant of fine Selmer groups associated to general Drinfeld modules
Let $F$ be a global function field over the finite field $\mathbb{F}_q$ where $q$ is a prime power and $A$ be the ring of elements in $F$ regular outside $\infty$. Let $Ï$ be an arbitrary Drinfeld module over $F$ For a fixed non-zero prime ideal $\mathfrak{p}$ of $A$, we show that on the constant $\mathbb{Z}_{\textit{p}}-$extension $\mathfrak{F}$ of $F$, the Pontryagin dual of the fine Selmer group associated to the $\mathfrak{p}-$primary torsion of $Ï$ over $\mathfrak{F}$ is a finitely generated Iwasawa module such that its Iwasawa $μ-$invariant vanishes. This provides a generalization of the results given in arXiv:2311.06499.
Hang Chen
数学
Hang Chen.The $μ-$invariant of fine Selmer groups associated to general Drinfeld modules[EB/OL].(2025-07-03)[2025-07-16].https://arxiv.org/abs/2507.02688.点此复制
评论