Régularité du rayon hyperbolique
Régularité du rayon hyperbolique
Let $Ω\subset\mathbb R^2$ be a bounded domain of class $C^{2+α}$, $0<α<1$. We show that if $u$ is the maximal solution of $Îu = 4\exp(2u)$, which tends to $+\infty$ as $(x,y)\to\partialΩ$, then the hyperbolic radius $v=\exp(-u)$ is of class $C^{2+α}$ up to the boundary. The proof relies on new Schauder estimates for Fuchsian elliptic equations.
Satyanad Kichenassamy
数学
Satyanad Kichenassamy.Régularité du rayon hyperbolique[EB/OL].(2025-07-04)[2025-07-21].https://arxiv.org/abs/2507.03717.点此复制
评论