On universal deformation rings and stable homogeneous tubes
On universal deformation rings and stable homogeneous tubes
Let $\mathbf{k}$ be a field of any characteristic and let $Î$ be a finite dimensional $\mathbf{k}$-algebra. We prove that if $V$ is a finite dimensional right $Î$-module that lies in the mouth of a stable homogeneous tube $\mathfrak{T}$ of the Auslander-Reiten quiver $Î$ with $\underline{\mathrm{End}}_Î(V)$ a division ring, then $V$ has a versal deformation ring $R(Î,V)$ isomorphic to $\mathbf{k}[\![t]\!]$. As consequence we obtain that if $\mathbf{k}$ is algebraically closed, $Î$ is a symmetric special biserial $\mathbf{k}$-algebra and $V$ is a band $Î$-module with $\underline{\mathrm{End}}_Î(V) \cong \mathbf{k}$ that lies in the mouth of its homogeneous tube, then $R(Î,V)$ is universal and isomorphic to $\mathbf{k}[\![t]\!]$.
Jhony F. Caranguay-Mainguez、Pedro Rizzo、Jose A. Velez-Marulanda
数学
Jhony F. Caranguay-Mainguez,Pedro Rizzo,Jose A. Velez-Marulanda.On universal deformation rings and stable homogeneous tubes[EB/OL].(2025-07-04)[2025-07-17].https://arxiv.org/abs/2507.03693.点此复制
评论