On the Regularity of Navier-Stokes Equations in Critical Space
On the Regularity of Navier-Stokes Equations in Critical Space
This paper focuses on the regularity of the Navier-Stokes equations in critical space. Let $ u(x,t) $ and $ p(x,t) $ denote suitable weak solution of the Navier-Stokes equations in $Q_T=\mathbb{R}^3\times(-T, 0)$. We prove that if $u(x,t)$ is in the scaling invariant spaces $L_t^{\infty}L_{x_3}^{p_1}L_{x_h}^{p_2}(Q_T)$ , where $ \frac{1}{p_1}+\frac{2}{p_2}=1 $ , $p_1\geq 2$ and $ x_h = (x_1, x_2) $ , then $ u $ is a smooth solution in $ Q_T $ and doesn't blow up at $ t = 0 $. In particular, if $ u(x,t) \in L_t^{\infty}L_{x_3}^{\infty}L_{x_h}^{2}(Q_T)$, then $u(x,t)$ is a smooth solution in $ Q_T $ and regular up to $ t = 0 $.
Shiyang Xiong、Liqun Zhang
数学力学
Shiyang Xiong,Liqun Zhang.On the Regularity of Navier-Stokes Equations in Critical Space[EB/OL].(2025-07-05)[2025-08-02].https://arxiv.org/abs/2507.03881.点此复制
评论