Taming the Tri-Space Tension: ARC-Guided Hallucination Modeling and Control for Text-to-Image Generation
Taming the Tri-Space Tension: ARC-Guided Hallucination Modeling and Control for Text-to-Image Generation
Despite remarkable progress in image quality and prompt fidelity, text-to-image (T2I) diffusion models continue to exhibit persistent "hallucinations", where generated content subtly or significantly diverges from the intended prompt semantics. While often regarded as unpredictable artifacts, we argue that these failures reflect deeper, structured misalignments within the generative process. In this work, we propose a cognitively inspired perspective that reinterprets hallucinations as trajectory drift within a latent alignment space. Empirical observations reveal that generation unfolds within a multiaxial cognitive tension field, where the model must continuously negotiate competing demands across three key critical axes: semantic coherence, structural alignment, and knowledge grounding. We then formalize this three-axis space as the \textbf{Hallucination Tri-Space} and introduce the Alignment Risk Code (ARC): a dynamic vector representation that quantifies real-time alignment tension during generation. The magnitude of ARC captures overall misalignment, its direction identifies the dominant failure axis, and its imbalance reflects tension asymmetry. Based on this formulation, we develop the TensionModulator (TM-ARC): a lightweight controller that operates entirely in latent space. TM-ARC monitors ARC signals and applies targeted, axis-specific interventions during the sampling process. Extensive experiments on standard T2I benchmarks demonstrate that our approach significantly reduces hallucination without compromising image quality or diversity. This framework offers a unified and interpretable approach for understanding and mitigating generative failures in diffusion-based T2I systems.
Jianjiang Yang、Ziyan Huang
计算技术、计算机技术
Jianjiang Yang,Ziyan Huang.Taming the Tri-Space Tension: ARC-Guided Hallucination Modeling and Control for Text-to-Image Generation[EB/OL].(2025-07-09)[2025-07-16].https://arxiv.org/abs/2507.04946.点此复制
评论