Event-RGB Fusion for Spacecraft Pose Estimation Under Harsh Lighting
Event-RGB Fusion for Spacecraft Pose Estimation Under Harsh Lighting
Spacecraft pose estimation is crucial for autonomous in-space operations, such as rendezvous, docking and on-orbit servicing. Vision-based pose estimation methods, which typically employ RGB imaging sensors, is a compelling solution for spacecraft pose estimation, but are challenged by harsh lighting conditions, which produce imaging artifacts such as glare, over-exposure, blooming and lens flare. Due to their much higher dynamic range, neuromorphic or event sensors are more resilient to extreme lighting conditions. However, event sensors generally have lower spatial resolution and suffer from reduced signal-to-noise ratio during periods of low relative motion. This work addresses these individual sensor limitations by introducing a sensor fusion approach combining RGB and event sensors. A beam-splitter prism was employed to achieve precise optical and temporal alignment. Then, a RANSAC-based technique was developed to fuse the information from the RGB and event channels to achieve pose estimation that leveraged the strengths of the two modalities. The pipeline was complemented by dropout uncertainty estimation to detect extreme conditions that affect either channel. To benchmark the performance of the proposed event-RGB fusion method, we collected a comprehensive real dataset of RGB and event data for satellite pose estimation in a laboratory setting under a variety of challenging illumination conditions. Encouraging results on the dataset demonstrate the efficacy of our event-RGB fusion approach and further supports the usage of event sensors for spacecraft pose estimation. To support community research on this topic, our dataset will be released publicly.
Mohsi Jawaid、Marcus Märtens、Tat-Jun Chin
电子元件、电子组件电子技术应用
Mohsi Jawaid,Marcus Märtens,Tat-Jun Chin.Event-RGB Fusion for Spacecraft Pose Estimation Under Harsh Lighting[EB/OL].(2025-07-08)[2025-07-21].https://arxiv.org/abs/2507.05698.点此复制
评论