|国家预印本平台
首页|An optimal fractional Hardy inequality on the discrete half-line

An optimal fractional Hardy inequality on the discrete half-line

An optimal fractional Hardy inequality on the discrete half-line

来源:Arxiv_logoArxiv
英文摘要

In the context of Hardy inequalities for the fractional Laplacian $(-Δ_{\mathbb{N}})^σ$ on the discrete half-line $\mathbb{N}$, we provide an optimal Hardy-weight $W^{\mathrm{op}}_σ$ for exponents $σ\in\left(0,1\right]$. As a consequence, we provide an estimate of the sharp constant in the fractional Hardy inequality with the classical Hardy-weight $n^{-2σ}$ on $\mathbb{N}$. It turns out that for $σ=1$ the Hardy-weight $W^{\mathrm{op}}_{1}$ is pointwise larger than the optimal Hardy-weight obtained by Keller--Pinchover--Pogorzelski near infinity. As an application of our main result, we obtain unique continuation results at infinity for the solutions of some fractional Schrödinger equation.

Ujjal Das、Rubén de la Fuente-Fernández

数学

Ujjal Das,Rubén de la Fuente-Fernández.An optimal fractional Hardy inequality on the discrete half-line[EB/OL].(2025-07-09)[2025-07-16].https://arxiv.org/abs/2507.06716.点此复制

评论