首页|Intrinsic Parameterization of Supermanifold Morphisms from $\mathbb{R}^{0|2}$ via Decomposable Bivector Bundles
Intrinsic Parameterization of Supermanifold Morphisms from $\mathbb{R}^{0|2}$ via Decomposable Bivector Bundles
Intrinsic Parameterization of Supermanifold Morphisms from $\mathbb{R}^{0|2}$ via Decomposable Bivector Bundles
We present an intrinsic geometric classification of the supermanifold of maps from $\mathbb{R}^{0|2}$ to any smooth manifold $S$, avoiding auxiliary structures. The key isomorphism relates this space to the pullback of the decomposable bivector bundle over $S$, shown via algebraic constraints forcing odd vectors to be linearly dependent. The reduced manifold has fiber dimension $\dim S + 1$, unifying topological or algebraic views for a canonical framework in supersymmetric theories, distinct from prior works using connections.
Zhiwei Yan
物理学数学
Zhiwei Yan.Intrinsic Parameterization of Supermanifold Morphisms from $\mathbb{R}^{0|2}$ via Decomposable Bivector Bundles[EB/OL].(2025-06-29)[2025-07-17].https://arxiv.org/abs/2507.06246.点此复制
评论