|国家预印本平台
首页|Invariants of twisted current algebras and related Poisson-commutative subalgebras

Invariants of twisted current algebras and related Poisson-commutative subalgebras

Invariants of twisted current algebras and related Poisson-commutative subalgebras

来源:Arxiv_logoArxiv
英文摘要

Let q be a finite-dimensional Lie algebra and $θ$ an automorphism of q of order m. We extend $θ$ to an automorphism of the loop algebra of q and consider the fixed-point subalgebra $q[t,t^{-1}]^θ$. Using a splitting of $q[t,t^{-1}]^θ$, we construct $θ$-twisted Poisson-commutative versions of the Feigin--Frenkel centre and the universal Gaudin subalgebra introduced by Ilin and Rybnikov in 2021.

Dmitri Panyushev、Oksana Yakimova

数学

Dmitri Panyushev,Oksana Yakimova.Invariants of twisted current algebras and related Poisson-commutative subalgebras[EB/OL].(2025-07-10)[2025-07-25].https://arxiv.org/abs/2507.07958.点此复制

评论