Invariants of twisted current algebras and related Poisson-commutative subalgebras
Invariants of twisted current algebras and related Poisson-commutative subalgebras
Let q be a finite-dimensional Lie algebra and $θ$ an automorphism of q of order m. We extend $θ$ to an automorphism of the loop algebra of q and consider the fixed-point subalgebra $q[t,t^{-1}]^θ$. Using a splitting of $q[t,t^{-1}]^θ$, we construct $θ$-twisted Poisson-commutative versions of the Feigin--Frenkel centre and the universal Gaudin subalgebra introduced by Ilin and Rybnikov in 2021.
Dmitri Panyushev、Oksana Yakimova
数学
Dmitri Panyushev,Oksana Yakimova.Invariants of twisted current algebras and related Poisson-commutative subalgebras[EB/OL].(2025-07-10)[2025-07-25].https://arxiv.org/abs/2507.07958.点此复制
评论