Exact Turán densities in triple systems
Exact Turán densities in triple systems
In this paper, we prove several new Turán density results for $3$-graphs. We show: $Ï(C_4^3, \mathrm{complement\ of\ } F_5) = 2\sqrt{3} - 3$, $Ï(F_{3,2}, C_5^{3-}) = \frac{2}{9}$, and $Ï(F_{3,2}, \mathrm{induced\ complement\ of\ } F_{3,2}) = \frac{3}{8}$. The first result confirms the conjecture of Shi~[On Turán denisties of small triple graphs, European J. Combin. 52 (2016) 95-102]. The other results give several special non-principal family posed by Mubayi and Rödl~[On the Turán number of triple systems, J. Combin. Theory A. 100 (2002) 135-152].
Nannan Chen、Yuzhen Qi、Caihong Yang、Hongbin Zhao
数学
Nannan Chen,Yuzhen Qi,Caihong Yang,Hongbin Zhao.Exact Turán densities in triple systems[EB/OL].(2025-07-10)[2025-07-21].https://arxiv.org/abs/2507.07360.点此复制
评论