First eigenvalue estimates on complete Kähler manifolds
First eigenvalue estimates on complete Kähler manifolds
Let $ (M,Ï_g) $ be a complete Kähler manifold of complex dimension $n$. We prove that if the holomorphic sectional curvature satisfies $\mathrm{HSC} \geq 2 $, then the first eigenvalue $λ_1$ of the Laplacian on $(M,Ï_g)$ satisfies $$ λ_1 \geq \frac{320(n-1)+576}{81(n-1)+144}.$$ This result is established through a new Bochner-Kodaira type identity specifically developed for holomorphic sectional curvature.
Mingwei Wang、Xiaokui Yang
数学
Mingwei Wang,Xiaokui Yang.First eigenvalue estimates on complete Kähler manifolds[EB/OL].(2025-07-12)[2025-07-25].https://arxiv.org/abs/2507.09203.点此复制
评论