|国家预印本平台
首页|Dunkl paraproducts and fractional Leibniz rules for the Dunkl Laplacian

Dunkl paraproducts and fractional Leibniz rules for the Dunkl Laplacian

Dunkl paraproducts and fractional Leibniz rules for the Dunkl Laplacian

来源:Arxiv_logoArxiv
英文摘要

We establish fractional Leibniz rules for the Dunkl Laplacian $Δ_k$ of the form $$\|(-Δ_k)^s(fg)\|_{L^p(dμ_k)} \lesssim \|(-Δ_k)^s f\|_{L^{p_1}(dμ_k)} \|g\|_{L^{p_2}(dμ_k)} + \|f\|_{L^{p_1}(dμ_k)} \|(-Δ_k)^s g\|_{L^{p_2}(dμ_k)}.$$ Our approach relies on adapting the classical paraproduct decomposition to the Dunkl setting. In the process, we develop several new auxiliary results. Specifically, we show that for a Schwartz function $f$, the function $(-Δ_k)^s f$ satisfies a pointwise decay estimate; we establish a version of almost orthogonality estimates adapted to the Dunkl framework; and we investigate the boundedness of Dunkl paraproduct operators on the Lebesgue spaces.

The Anh Bui、Suman Mukherjee

数学

The Anh Bui,Suman Mukherjee.Dunkl paraproducts and fractional Leibniz rules for the Dunkl Laplacian[EB/OL].(2025-07-14)[2025-07-25].https://arxiv.org/abs/2507.10042.点此复制

评论