Dunkl paraproducts and fractional Leibniz rules for the Dunkl Laplacian
Dunkl paraproducts and fractional Leibniz rules for the Dunkl Laplacian
We establish fractional Leibniz rules for the Dunkl Laplacian $Î_k$ of the form $$\|(-Î_k)^s(fg)\|_{L^p(dμ_k)} \lesssim \|(-Î_k)^s f\|_{L^{p_1}(dμ_k)} \|g\|_{L^{p_2}(dμ_k)} + \|f\|_{L^{p_1}(dμ_k)} \|(-Î_k)^s g\|_{L^{p_2}(dμ_k)}.$$ Our approach relies on adapting the classical paraproduct decomposition to the Dunkl setting. In the process, we develop several new auxiliary results. Specifically, we show that for a Schwartz function $f$, the function $(-Î_k)^s f$ satisfies a pointwise decay estimate; we establish a version of almost orthogonality estimates adapted to the Dunkl framework; and we investigate the boundedness of Dunkl paraproduct operators on the Lebesgue spaces.
The Anh Bui、Suman Mukherjee
数学
The Anh Bui,Suman Mukherjee.Dunkl paraproducts and fractional Leibniz rules for the Dunkl Laplacian[EB/OL].(2025-07-14)[2025-07-25].https://arxiv.org/abs/2507.10042.点此复制
评论