Fractional sublinear Sobolev inequality for $\mathcal{L}-$superharmonic functions
Fractional sublinear Sobolev inequality for $\mathcal{L}-$superharmonic functions
We establish a Sobolev-type inequality in Lorentz spaces for $\mathcal{L}$-superharmonic functions \[ \|u\|_{L^{\frac{nq}{n-αq},t}(\mathbb{R}^n)} \leq c \left\| \frac{u(x) - u(y)}{|x-y|^{\frac{n}{q}+α}} \right\|_{L^{q,t}(\mathbb{R}^n \times \mathbb{R}^n)} \] in the sublinear case $p-1 < q < 1$ and $p-1\leq t\leq \infty$. The nonlocal nonlinear elliptic operator $\mathcal{L}$ is modeled from the fractional $p$-Laplacian $(- Î_{p})^α $ with $0 < α< 1$ and $1<p<2$. Related Gagliardo-Nirenberg interpolation for $\mathcal{L}$-superharmonic functions is also derived.
Aye Chan May、Adisak Seesanea
数学
Aye Chan May,Adisak Seesanea.Fractional sublinear Sobolev inequality for $\mathcal{L}-$superharmonic functions[EB/OL].(2025-07-14)[2025-07-23].https://arxiv.org/abs/2507.10344.点此复制
评论