Effective equidistribution of norm one elements in CM-fields
Effective equidistribution of norm one elements in CM-fields
For a number field $K$ let $\mathcal{S}_K$ be the maximal subgroup of the multiplicative group $K^\times$ that embeds into the unit circle under each embedding of $K$ into the complex numbers. The group $\mathcal{S}_K$ can be seen as an archimedean counterpart to the group of units $\mathcal{O}_K^\times$ of the ring of integers $\mathcal{O}_K$. If $K=\mathbb{Q}(\mathcal{S}_K)$ is a CM-field then $\mathcal{S}_K/{\mathop{\rm Tor}\nolimits}(K^\times)$ is a free abelian group of infinite rank. If $K=\mathbb{Q}(\mathcal{S}_K)$ is not a CM-field then $\mathcal{S}_K=\{\pm 1\}$. In the former case $\mathcal{S}_K$ is the kernel of the relative norm map from $K^\times$ to the multiplicative subgroup $k^\times$ of the maximal totally real subfield $k$ of $K$.
Shabnam Akhtari、Jeffrey D. Vaaler、Martin Widmer
数学
Shabnam Akhtari,Jeffrey D. Vaaler,Martin Widmer.Effective equidistribution of norm one elements in CM-fields[EB/OL].(2025-07-14)[2025-08-02].https://arxiv.org/abs/2507.10387.点此复制
评论