$Î$-convergence for nonlocal phase transitions involving the $H^{1/2}$ norm
$Î$-convergence for nonlocal phase transitions involving the $H^{1/2}$ norm
We study functionals \begin{equation*} F_\varepsilon (u) := λ_\varepsilon \int_ΩW(u) \, dx + \varepsilon \|u\|_{H^{1/2}}^2 \end{equation*} for a double well potential $W$ and the Gagliardo seminorm $\|\cdot\|_{H^{1/2}}$ when $\varepsilon \ln(λ_\varepsilon) \rightarrow k$ as $\varepsilon \rightarrow 0^+$ and show compactness in the space of $BV$ functions on $Ω$ and the $Î$-convergence to the classical surface tension functional.
Tim Heilmann
数学
Tim Heilmann.$Î$-convergence for nonlocal phase transitions involving the $H^{1/2}$ norm[EB/OL].(2025-07-15)[2025-08-02].https://arxiv.org/abs/2507.11054.点此复制
评论