The miniJPAS survey quasar selection V: combined algorithm
The miniJPAS survey quasar selection V: combined algorithm
Aims. Quasar catalogues from narrow-band photometric data are used in a variety of applications, including targeting for spectroscopic follow-up, measurements of supermassive black hole masses, or Baryon Acoustic Oscillations. Here, we present the final quasar catalogue, including redshift estimates, from the miniJPAS Data Release constructed using several flavours of machine-learning algorithms. Methods. In this work, we use a machine learning algorithm to classify quasars, optimally combining the output of 8 individual algorithms. We assess the relative importance of the different classifiers. We include results from 3 different redshift estimators to also provide improved photometric redshifts. We compare our final catalogue against both simulated data and real spectroscopic data. Our main comparison metric is the $f_1$ score, which balances the catalogue purity and completeness. Results. We evaluate the performance of the combined algorithm using synthetic data. In this scenario, the combined algorithm outperforms the rest of the codes, reaching $f_1=0.88$ and $f_1=0.79$ for high- and low-z quasars (with $z\geq2.1$ and $z<2.1$, respectively) down to magnitude $r=23.5$. We further evaluate its performance against real spectroscopic data, finding different performances. We conclude that our simulated data is not realistic enough and that a new version of the mocks would improve the performance. Our redshift estimates on mocks suggest a typical uncertainty of $Ï_{\rm NMAD} =0.11$, which, according to our results with real data, could be significantly smaller (as low as $Ï_{\rm NMAD}=0.02$). We note that the data sample is still not large enough for a full statistical consideration.
Ignasi Pérez-Ràfols、L. Raul Abramo、Ginés Martínez-Solaeche、Natália V. N. Rodrigues、Matthew M. Pieri、Marina Burjalès-del-Amo、Maria Escolà-Gallinat、Montserrat Ferré-Abad、Mireia Isern-Vizoso、Jailson Alcaniz、Narciso Benitez、Silvia Bonoli、Saulo Carneiro、Javier Cenarro、David Cristóbal-Hornillos、Renato Dupke、Alessandro Ederoclite、Rosa María González Delgado、Siddhartha Gurung-Lopez、Antonio Hernán-Caballero、Carlos Hernández-Monteagudo、Carlos López-Sanjuan、Antonio Marín-Franch、Valerio Marra、Claudia Mendes de Oliveira、Mariano Moles、Laerte Sodré、Keith Taylor、Jesús Varela、Héctor Vázquez Ramió
天文学
Ignasi Pérez-Ràfols,L. Raul Abramo,Ginés Martínez-Solaeche,Natália V. N. Rodrigues,Matthew M. Pieri,Marina Burjalès-del-Amo,Maria Escolà-Gallinat,Montserrat Ferré-Abad,Mireia Isern-Vizoso,Jailson Alcaniz,Narciso Benitez,Silvia Bonoli,Saulo Carneiro,Javier Cenarro,David Cristóbal-Hornillos,Renato Dupke,Alessandro Ederoclite,Rosa María González Delgado,Siddhartha Gurung-Lopez,Antonio Hernán-Caballero,Carlos Hernández-Monteagudo,Carlos López-Sanjuan,Antonio Marín-Franch,Valerio Marra,Claudia Mendes de Oliveira,Mariano Moles,Laerte Sodré,Keith Taylor,Jesús Varela,Héctor Vázquez Ramió.The miniJPAS survey quasar selection V: combined algorithm[EB/OL].(2025-07-15)[2025-07-23].https://arxiv.org/abs/2507.11380.点此复制
评论