SFATTI: Spiking FPGA Accelerator for Temporal Task-driven Inference -- A Case Study on MNIST
SFATTI: Spiking FPGA Accelerator for Temporal Task-driven Inference -- A Case Study on MNIST
Hardware accelerators are essential for achieving low-latency, energy-efficient inference in edge applications like image recognition. Spiking Neural Networks (SNNs) are particularly promising due to their event-driven and temporally sparse nature, making them well-suited for low-power Field Programmable Gate Array (FPGA)-based deployment. This paper explores using the open-source Spiker+ framework to generate optimized SNNs accelerators for handwritten digit recognition on the MNIST dataset. Spiker+ enables high-level specification of network topologies, neuron models, and quantization, automatically generating deployable HDL. We evaluate multiple configurations and analyze trade-offs relevant to edge computing constraints.
Alessio Caviglia、Filippo Marostica、Alessio Carpegna、Alessandro Savino、Stefano Di Carlo
微电子学、集成电路
Alessio Caviglia,Filippo Marostica,Alessio Carpegna,Alessandro Savino,Stefano Di Carlo.SFATTI: Spiking FPGA Accelerator for Temporal Task-driven Inference -- A Case Study on MNIST[EB/OL].(2025-07-04)[2025-08-02].https://arxiv.org/abs/2507.10561.点此复制
评论