|国家预印本平台
首页|SFATTI: Spiking FPGA Accelerator for Temporal Task-driven Inference -- A Case Study on MNIST

SFATTI: Spiking FPGA Accelerator for Temporal Task-driven Inference -- A Case Study on MNIST

SFATTI: Spiking FPGA Accelerator for Temporal Task-driven Inference -- A Case Study on MNIST

来源:Arxiv_logoArxiv
英文摘要

Hardware accelerators are essential for achieving low-latency, energy-efficient inference in edge applications like image recognition. Spiking Neural Networks (SNNs) are particularly promising due to their event-driven and temporally sparse nature, making them well-suited for low-power Field Programmable Gate Array (FPGA)-based deployment. This paper explores using the open-source Spiker+ framework to generate optimized SNNs accelerators for handwritten digit recognition on the MNIST dataset. Spiker+ enables high-level specification of network topologies, neuron models, and quantization, automatically generating deployable HDL. We evaluate multiple configurations and analyze trade-offs relevant to edge computing constraints.

Alessio Caviglia、Filippo Marostica、Alessio Carpegna、Alessandro Savino、Stefano Di Carlo

微电子学、集成电路

Alessio Caviglia,Filippo Marostica,Alessio Carpegna,Alessandro Savino,Stefano Di Carlo.SFATTI: Spiking FPGA Accelerator for Temporal Task-driven Inference -- A Case Study on MNIST[EB/OL].(2025-07-04)[2025-08-02].https://arxiv.org/abs/2507.10561.点此复制

评论