Multiplicity free induction for the pairs $(\mathrm{GL}_{2}\times\mathrm{GL}_{2},\mathrm{diag}(\mathrm{GL}_{2}))$ and $(\mathrm{SL}_{3},\mathrm{GL}_{2})$ over finite fields
Multiplicity free induction for the pairs $(\mathrm{GL}_{2}\times\mathrm{GL}_{2},\mathrm{diag}(\mathrm{GL}_{2}))$ and $(\mathrm{SL}_{3},\mathrm{GL}_{2})$ over finite fields
We classify the irredible representations of $\mathrm{GL}_{2}(q)$ for which the induction to the product group $\mathrm{GL}_{2}(q)\times\mathrm{GL}_{2}(q)$, under the diagonal embedding, decomposes multiplicity free. It turns out that only the irreducible representations of dimensions $1$ and $q-1$ have this property. We show that for $\mathrm{GL}_{2}(q)$ embedded into $\mathrm{SL}_{3}(q)$ via $g\mapsto\mathrm{diag}(g,\det g^{-1})$ none of the irreducible representations of $\mathrm{GL}_{2}(q)$ induce multiplicity free. In contrast, over the complex numbers, the holomorphic representation theory of these pairs is multiplicity free and the corresponding matrix coefficients are encoded by vector-valued Jacobi polynomials. We show that similar results cannot be expected in the context of finite fields for these examples.
Elias Depuydt、Maarten van Pruijssen
数学
Elias Depuydt,Maarten van Pruijssen.Multiplicity free induction for the pairs $(\mathrm{GL}_{2}\times\mathrm{GL}_{2},\mathrm{diag}(\mathrm{GL}_{2}))$ and $(\mathrm{SL}_{3},\mathrm{GL}_{2})$ over finite fields[EB/OL].(2025-07-14)[2025-07-25].https://arxiv.org/abs/2507.10790.点此复制
评论