Cryogenic light detectors with thermal signal amplification for $0νββ$ search experiments
Cryogenic light detectors with thermal signal amplification for $0νββ$ search experiments
As a step towards the realization of cryogenic-detector experiments to search for neutrinoless double-beta decay (such as CROSS, BINGO, and CUPID), we investigated a batch of 10 Ge light detectors (LDs) assisted by Neganov-Trofimov-Luke (NTL) signal amplification. Each LD was assembled with a large cubic light-emitting crystal (45 mm side) using the recently developed CROSS mechanical structure. The detector array was operated at milli-Kelvin temperatures in a pulse-tube cryostat at the Canfranc underground laboratory in Spain. We achieved good performance with scintillating bolometers from CROSS, made of Li$_{2}$$^{100}$MoO$_4$ crystals and used as reference detectors of the setup, and with all LDs tested (except for a single device that encountered an electronics issue). No leakage current was observed for 8 LDs with an electrode bias up to 100 V. Operating the LDs at an 80 V electrode bias applied in parallel, we obtained a gain of around 9 in the signal-to-noise ratio of these devices, allowing us to achieve a baseline noise RMS of $O$(10 eV). Thanks to the strong current polarization of the temperature sensors, the time response of the devices was reduced to around half a millisecond in rise time. The achieved performance of the LDs was extrapolated via simulations of pile-up rejection capability for several configurations of the CUPID detector structure. Despite the sub-optimal noise conditions of the LDs (particularly at high frequencies), we demonstrated that the NTL technology provides a viable solution for background reduction in CUPID.
A. Armatol、A. S. Barabash、D. Baudin、V. Berest、M. Beretta、L. Bergé、M. Buchynska、J. M. Calvo-Mozota、C. Capelli、P. Carniti、M. Chapellier、I. Dafinei、F. A. Danevich、T. Dixon、A. Drobizhev、L. Dumoulin、F. Ferri、A. Gallas、A. Giuliani、C. Gotti、Ph. Gras、A. Ianni、L. Imbert、H. Khalife、V. V. Kobychev、S. I. Konovalov、P. Loaiza、P. de Marcillac、S. Marnieros、C. A. Marrache-Kikuchi、M. Martinez、E. Mazzucato、C. Nones、E. Olivieri、A. Ortiz de Solórzano、M. Pageot、Y. Peinaud、V. Pérez、G. Pessina、D. V. Poda、P. Rosier、J. A. Scarpaci、B. Schmidt、V. I. Tretyak、V. I. Umatov、M. M. Zarytskyy、A. Zolotarova
粒子探测技术、辐射探测技术、核仪器仪表
A. Armatol,A. S. Barabash,D. Baudin,V. Berest,M. Beretta,L. Bergé,M. Buchynska,J. M. Calvo-Mozota,C. Capelli,P. Carniti,M. Chapellier,I. Dafinei,F. A. Danevich,T. Dixon,A. Drobizhev,L. Dumoulin,F. Ferri,A. Gallas,A. Giuliani,C. Gotti,Ph. Gras,A. Ianni,L. Imbert,H. Khalife,V. V. Kobychev,S. I. Konovalov,P. Loaiza,P. de Marcillac,S. Marnieros,C. A. Marrache-Kikuchi,M. Martinez,E. Mazzucato,C. Nones,E. Olivieri,A. Ortiz de Solórzano,M. Pageot,Y. Peinaud,V. Pérez,G. Pessina,D. V. Poda,P. Rosier,J. A. Scarpaci,B. Schmidt,V. I. Tretyak,V. I. Umatov,M. M. Zarytskyy,A. Zolotarova.Cryogenic light detectors with thermal signal amplification for $0νββ$ search experiments[EB/OL].(2025-07-21)[2025-08-10].https://arxiv.org/abs/2507.15732.点此复制
评论