时空对偶原理计算黑洞温度与辐射
Spacetime Duality Principle: Calculations of Black Hole Temperature and Radiation
1. 黑洞温度的全新物理机制(基于量子引力在黑洞内部的物质创造)温度公式:T = \left( \frac{c^7 \eta U_{QG}}{32\pi G^3 M_{BH}^3 \sigma} \right)^{1/4}关键参数:U_{QG}:黑洞内部极端反向量子引力势能,计算涉及物质创造区(\ell < r < r_{CFT})的积分。\eta:量子时空曲率效率因子,依赖星系重子质量比(\eta \propto (M_{\text{gal}}/M_{\text{MW}})^2) 2. 辐射能量三阶段演化:(1)内部生成: 普朗克光子能量:E_{\text{Planck}} = 2.821 k_B T(Sgr A*: 2.247 GeV)。(2)视界隧穿:红移衰减:光子能量降至 E_{\text{photon}} \in [E_{\text{Planck}} \sqrt{A(r_h)}, E_{\text{Planck}} \sqrt{A(r_{ph})}](Sgr A*下限:4.55 \times 10^{-17} eV)。红移因子:\sqrt{A(r)} \approx \sqrt{\Lambda_{\text{cosmo}} / \Lambda(r)}。(3)引力波驻波耦合:能量加成:E_{GW}(r_{sh}) = \frac{c^2 \eta}{24G} \frac{(A_{\mu\nu}^0)^2}{|q(r_h)^2|} (r_{sh}^3 - r_h^3)(Sgr A*上限:9.85 GeV)。最终能量范围:E \in [10^{-17} \text{eV}, 10.8 \text{ GeV}](覆盖Fermi-LAT观测的0.1–10 GeV) 观测目标 理论预言 实测数据 设备Sgr A*耀发周期 89.8–111.6秒 JWST测得90–120秒 NIRCamM87*耀发周期 43–52小时 H.E.S.S.记录24–48小时 H.E.S.S.Sgr A*能谱 0.1–10 GeV非热谱 Fermi-LAT匹配 Fermi-LAT 3. 结论:时空对偶原理首次建立黑洞温度–量子引力势能–观测辐射的定量桥梁,通过:(1) 温度公式揭示黑洞内部量子过程主导热力学;(2) 三阶段辐射机制统一解释能谱、时间尺度与偏振;(3) 六组观测数据验证(EHT阴影、Fermi能谱、JWST耀发等),预言偏振与能谱截断待CTA终极检验
天文学物理学
黑洞温度辐射量子引力引力红移引力波银河系M87星系
黄海.时空对偶原理计算黑洞温度与辐射[EB/OL].(2025-07-18)[2025-10-19].https://chinaxiv.org/abs/202507.00384.点此复制
1. A Novel Physical Mechanism for Black Hole Temperature(Based on Matter Creation via Quantum Gravity in Black Hole Interiors)Temperature Formula:T = \left( \frac{c^7 \eta U_{QG}}{32\pi G^3 M_{BH}^3 \sigma} \right)^{1/4}Key Parameters: U_{QG}: Extreme repulsive quantum gravitational potential energy within the black hole, calculated by integrating over the matter creation zone (\ell < r < r_{CFT}). \eta: Quantum spacetime curvature efficiency factor, dependent on the baryonic mass ratio of galaxies (\eta \propto (M_{\text{gal}}/M_{\text{MW}})^2).2. Three-Stage Evolution of Radiation Energy(1) Internal Generation: Planck Photon Energy: E_{\text{Planck}} = 2.821 k_B T (Sgr A*: 2.247 GeV).(2) Horizon Tunneling: Redshift Attenuation: Photon energy reduces to E_{\text{photon}} \in [E_{\text{Planck}} \sqrt{A(r_h)}, E_{\text{Planck}} \sqrt{A(r_{ph})}] (Sgr A* lower limit: 4.55 \times 10^{-17} eV). Redshift Factor: \sqrt{A(r)} \approx \sqrt{\Lambda_{\text{cosmo}} / \Lambda(r)}.(3) Gravitational Wave Standing Wave Coupling: Energy Addition: E_{GW}(r_{sh}) = \frac{c^2 \eta}{24G} \frac{(A_{\mu\nu}^0)^2}{|q(r_h)^2|} (r_{sh}^3 - r_h^3) (Sgr A* upper limit: 9.85 GeV). Final Energy Range: E \in [10^{-17} \text{ eV}, 10.8 \text{ GeV}] (covers Fermi-LAT observations at 0.110 GeV). Observational Verification:Target Theoretical Prediction Observed Data InstrumentSgr A* Flare Period 89.8111.6 seconds 90120 seconds (JWST) NIRCam/JWSTM87* Flare Period 4352 hours 2448 hours (H.E.S.S.) H.E.S.S.Sgr A* Spectrum 0.110 GeV non-thermal Matched (Fermi-LAT) Fermi-LAT3. ConclusionThe Spacetime Duality Principle bridges the quantitative gap between black hole temperature, quantum gravitational potential, and observable radiation through:(1) Temperature Formula: Reveals quantum processes in black hole interiors dominate thermodynamics.(2) Three-Stage Radiation: Unifies explanations for energy spectra, time scales, and polarization.(3) Six Observational Validations: Includes EHT shadows, Fermi spectra, and JWST flares; predictions for polarization and spectral cutoffs await CTA verification.
Black HoleTemperatureRadiationQuantum GravityGravitational RedshiftGravitational WavesMilky WayM87 Galaxy
展开英文信息
评论