|国家预印本平台
首页|Superlinear fractional $Φ$-Laplacian type problems via the nonlinear Rayleigh quotient with two parameters

Superlinear fractional $Φ$-Laplacian type problems via the nonlinear Rayleigh quotient with two parameters

Superlinear fractional $Φ$-Laplacian type problems via the nonlinear Rayleigh quotient with two parameters

来源:Arxiv_logoArxiv
英文摘要

In this work, we establish the existence and multiplicity of weak solutions for nonlocal elliptic problems driven by the fractional $Φ$-Laplacian operator, in the presence of a sign-indefinite nonlinearity. More specifically, we investigate the following nonlocal elliptic problem: \begin{equation*} \left\{\begin{array}{rcl} (-Δ_Φ)^s u +V(x)u & = & μa(x)|u|^{q-2}u-λ|u|^{p-2}u \mbox{ in }\, \mathbb{R}^N, \\ u\in W^{s,Φ}(\mathbb{R}^N),&& \end{array} \right. \end{equation*} where $s \in (0,1), N \geq 2$ and $μ, λ>0$. Here, the potentials $V, a : \mathbb{R}^N \to \mathbb{R}$ satisfy some suitable hypotheses. Our main objective is to determine sharp values for the parameters $λ> 0$ and $μ> 0$ where the Nehari method can be effectively applied. To achieve this, we utilize the nonlinear Rayleigh quotient along with a detailed analysis of the fibering maps associated with the energy functional. Additionally, we study the asymptotic behavior of the weak solutions to the main problem as $λ\to 0$ or $μ\to +\infty$.

L. R. S. de Assis、M. L. M. Carvalho、Edcarlos D. Silva、A. Salort

数学

L. R. S. de Assis,M. L. M. Carvalho,Edcarlos D. Silva,A. Salort.Superlinear fractional $Φ$-Laplacian type problems via the nonlinear Rayleigh quotient with two parameters[EB/OL].(2025-07-21)[2025-08-10].https://arxiv.org/abs/2507.15514.点此复制

评论