Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees
Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees
The vulnerability of neural networks to adversarial perturbations has necessitated formal verification techniques that can rigorously certify the quality of neural networks. As the state-of-the-art, branch and bound (BaB) is a "divide-and-conquer" strategy that applies off-the-shelf verifiers to sub-problems for which they perform better. While BaB can identify the sub-problems that are necessary to be split, it explores the space of these sub-problems in a naive "first-come-first-serve" manner, thereby suffering from an issue of inefficiency to reach a verification conclusion. To bridge this gap, we introduce an order over different sub-problems produced by BaB, concerning with their different likelihoods of containing counterexamples. Based on this order, we propose a novel verification framework Oliva that explores the sub-problem space by prioritizing those sub-problems that are more likely to find counterexamples, in order to efficiently reach the conclusion of the verification. Even if no counterexample can be found in any sub-problem, it only changes the order of visiting different sub-problem and so will not lead to a performance degradation. Specifically, Oliva has two variants, including $Oliva^{GR}$, a greedy strategy that always prioritizes the sub-problems that are more likely to find counterexamples, and $Oliva^{SA}$, a balanced strategy inspired by simulated annealing that gradually shifts from exploration to exploitation to locate the globally optimal sub-problems. We experimentally evaluate the performance of Oliva on 690 verification problems spanning over 5 models with datasets MNIST and CIFAR10. Compared to the state-of-the-art approaches, we demonstrate the speedup of Oliva for up to 25X in MNIST, and up to 80X in CIFAR10.
Guanqin Zhang、Kota Fukuda、Zhenya Zhang、H. M. N. Dilum Bandara、Shiping Chen、Jianjun Zhao、Yulei Sui
计算技术、计算机技术
Guanqin Zhang,Kota Fukuda,Zhenya Zhang,H. M. N. Dilum Bandara,Shiping Chen,Jianjun Zhao,Yulei Sui.Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees[EB/OL].(2025-07-23)[2025-08-10].https://arxiv.org/abs/2507.17453.点此复制
评论