Tighter Lower Bounds for Single Source Personalized PageRank
Tighter Lower Bounds for Single Source Personalized PageRank
We study lower bounds for approximating the Single Source Personalized PageRank (SSPPR) query, which measures the probability distribution of an $α$-decay random walk starting from a source node $s$. Existing lower bounds remain loose-$Ω\left(\min(m, 1/δ)\right)$ for relative error (SSPPR-R) and $Ω\left(\min(n, 1/ε)\right)$ for additive error (SSPPR-A). To close this gap, we establish tighter bounds for both settings. For SSPPR-R, we show a lower bound of $Ω\left(\min\left(m, \frac{\log(1/δ)}δ\right)\right)$ for any $δ\in (0,1)$. For SSPPR-A, we prove a lower bound of $Ω\left(\min\left(m, \frac{\log(1/ε)}ε\right)\right)$ for any $ε\in (0,1)$, assuming the graph has $m \in \mathcal{O}(n^{2-β})$ edges for any arbitrarily small constant $β\in (0,1)$.
Xinpeng Jiang、Haoyu Liu、Siqiang Luo、Xiaokui Xiao
计算技术、计算机技术
Xinpeng Jiang,Haoyu Liu,Siqiang Luo,Xiaokui Xiao.Tighter Lower Bounds for Single Source Personalized PageRank[EB/OL].(2025-07-19)[2025-08-10].https://arxiv.org/abs/2507.14462.点此复制
评论