Real Bialynicki-Birula flows in moduli spaces of Higgs bundles
Real Bialynicki-Birula flows in moduli spaces of Higgs bundles
Let $X$ be a compact Riemann surface $X$ of genus $\geqslant 2$ and let $Ï:X \to X$ be an anti-holomorphic involution. Using real and quaternionic systems of Hodge bundles, we study the topology of the real locus $\mathbb{R} \mathbf{M}_{\mathrm{Dol}}(r,d)$ of the moduli space of semistable Higgs bundles of rank $r$ and degree $d$ on $X$, for the induced real structure $(E,Ï) \to (Ï^*(\overline{E}),Ï^*(\overlineÏ))$. We show in particular that, when $\mathrm{gcd}(r,d)=1$, the number of connected components of $\mathbb{R} \mathbf{M}_{\mathrm{Dol}}(r,d)$ coincides with that of $\mathbb{R} \mathrm{Pic}_d(X)$, which is well-known.
Florent Schaffhauser、Tommaso Scognamiglio
数学
Florent Schaffhauser,Tommaso Scognamiglio.Real Bialynicki-Birula flows in moduli spaces of Higgs bundles[EB/OL].(2025-07-24)[2025-08-10].https://arxiv.org/abs/2507.18613.点此复制
评论