|国家预印本平台
首页|Schauder estimates for parabolic $p$-Laplace systems

Schauder estimates for parabolic $p$-Laplace systems

Schauder estimates for parabolic $p$-Laplace systems

来源:Arxiv_logoArxiv
英文摘要

We establish the local Hölder regularity of the spatial gradient of bounded weak solutions $u\colon E_T\to\R^k$ to the non-linear system of parabolic type \begin{equation*} \partial_tu-\Div\Big( a(x,t)\big(μ^2+|Du|^2\big)^\frac{p-2}2Du\Big)=0 \qquad\mbox{in $E_T$}, \end{equation*} where $p>1$, $μ\in[0,1]$, and the coefficient $a\in L^\infty(E_T)$ is bounded below by a positive constant and is Hölder continuous in the space variable $x$. As an application, we prove Hölder estimates for the gradient of weak solutions to a doubly non-linear parabolic equation in the super-critical fast diffusion regime.

Verena Bögelein、Frank Duzaar、Ugo Gianazza、Naian Liao、Christoph Scheven

数学

Verena Bögelein,Frank Duzaar,Ugo Gianazza,Naian Liao,Christoph Scheven.Schauder estimates for parabolic $p$-Laplace systems[EB/OL].(2025-07-21)[2025-08-10].https://arxiv.org/abs/2507.15722.点此复制

评论