Sign-patterns of Certain Infinite Products
Sign-patterns of Certain Infinite Products
The signs of Fourier coefficients of certain eta quotients are determined by dissecting expansions for theta functions and by applying a general dissection formula for certain classes of quintuple products. A characterization is given for the coefficient sign patterns for \[ \frac{(q^i;q^i)_{\infty}}{(q^p;q^p)_{\infty}} \] for integers \( i > 1 \) and primes \( p > 3 \). The sign analysis for this quotient addresses and extends a conjecture of Bringmann et al. for the coefficients of \( (q^2;q^2)_{\infty}(q^5;q^5)_{\infty}^{-1} \). The sign distribution for additional classes of eta quotients is considered. This addresses multiple conjectures posed by Bringmann et al.
Zeyu Huang、Timothy Huber、James McLaughlin、Pengjun Wang、Yan Xu、Dongxi Ye
数学
Zeyu Huang,Timothy Huber,James McLaughlin,Pengjun Wang,Yan Xu,Dongxi Ye.Sign-patterns of Certain Infinite Products[EB/OL].(2025-07-22)[2025-08-10].https://arxiv.org/abs/2507.16644.点此复制
评论