|国家预印本平台
首页|Strichartz estimates involving orthonormal systems at the critical summability exponent

Strichartz estimates involving orthonormal systems at the critical summability exponent

Strichartz estimates involving orthonormal systems at the critical summability exponent

来源:Arxiv_logoArxiv
英文摘要

The primary objective of this paper is to investigate the orthonormal Strichartz estimates at the critical summability exponent for the Schrödinger operator $e^{itΔ}$ with initial data from the homogeneous Sobolev space $\dot{H}^s (\mathbb{R}^n)$. We prove new global strong-type orthonormal Strichartz estimates in the interior of $ODCA$ at the optimal summability exponent $α=q$, thereby substantially supplymenting the work of Bez-Hong-Lee-Nakamura-Sawano \cite{Bez-Hong-Lee-Nakamura-Sawano}. Our approach is based on restricted weak-type orthonormal estimates, real interpolation argument and the advantageous condition $q<p$ in the interior of $ODCA$.

Guoxia Feng、Manli Song、Huoxiong Wu

物理学

Guoxia Feng,Manli Song,Huoxiong Wu.Strichartz estimates involving orthonormal systems at the critical summability exponent[EB/OL].(2025-07-20)[2025-08-18].https://arxiv.org/abs/2507.14974.点此复制

评论