Strichartz estimates involving orthonormal systems at the critical summability exponent
Strichartz estimates involving orthonormal systems at the critical summability exponent
The primary objective of this paper is to investigate the orthonormal Strichartz estimates at the critical summability exponent for the Schrödinger operator $e^{itÎ}$ with initial data from the homogeneous Sobolev space $\dot{H}^s (\mathbb{R}^n)$. We prove new global strong-type orthonormal Strichartz estimates in the interior of $ODCA$ at the optimal summability exponent $α=q$, thereby substantially supplymenting the work of Bez-Hong-Lee-Nakamura-Sawano \cite{Bez-Hong-Lee-Nakamura-Sawano}. Our approach is based on restricted weak-type orthonormal estimates, real interpolation argument and the advantageous condition $q<p$ in the interior of $ODCA$.
Guoxia Feng、Manli Song、Huoxiong Wu
物理学
Guoxia Feng,Manli Song,Huoxiong Wu.Strichartz estimates involving orthonormal systems at the critical summability exponent[EB/OL].(2025-07-20)[2025-08-18].https://arxiv.org/abs/2507.14974.点此复制
评论