Regularizing Effect for a Nonlocal Maxwell-Schrödinger System
Regularizing Effect for a Nonlocal Maxwell-Schrödinger System
In this paper we prove existence and regularity of weak solutions for the following system \begin{align*} \begin{cases} &-\mbox{div}\Bigg(\bigg(\|\nabla u\|^{p}_{L^{p}}+\|\nabla v\|^{p}_{L^{p}}\bigg)|\nabla u|^{p-2}\nabla u\Bigg) + g(x,u,v)=f \ \ \ \mbox{in} \ Ω; &-\mbox{div}\Bigg(\bigg(\|\nabla u\|^{p}_{L^{p}}+\|\nabla v\|^{p}_{L^{p}}\bigg)|\nabla v|^{p-2}\nabla v\Bigg) = h(x,u,v) \ \ \ \ \mbox{in} \ Ω; &u=v=0 \ \mbox{on} \ \partialΩ. \end{cases} \end{align*} where $Ω$ is an open bounded subset of $\mathbb{R}^N$, $N>2$, $f\in L^m(Ω)$, where $m>1$ and $g$, $h$ are two Carathéodory functions, which may be non monotone. We prove that under appropriate conditions on $g$ and $h$, there is gain of Sobolev and Lebesgue regularity for the solutions of this system.
Luís Henrique de Miranda、Ayana Pinheiro de Castro Santana
数学
Luís Henrique de Miranda,Ayana Pinheiro de Castro Santana.Regularizing Effect for a Nonlocal Maxwell-Schrödinger System[EB/OL].(2025-07-26)[2025-08-10].https://arxiv.org/abs/2507.12294.点此复制
评论