One reduction of the modified Toda hierarchy
One reduction of the modified Toda hierarchy
The modified Toda (mToda) hierarchy is a two-component generalization of the 1-st modified KP (mKP) hierarchy, which connects the Toda hierarchy via Miura links and has two tau functions. Based on the fact that the mToda and 1-st mKP hierarchies share the same fermionic form, we firstly construct the reduction of the mToda hierarchy $L_1(n)^M=L_2(n)^N+\sum_{l\in\mathbb{Z}}\sum_{i=1}^{m}q_{i,n}Î^lr_{i,n+1}Î$ and $(L_1(n)^M+L_2(n)^N)(1)=0$, called the generalized bigraded modified Toda hierarchy, which can be viewed as a new two-component generalization of the constrained mKP hierarchy $\mathfrak{L}^k=(\mathfrak{L}^k)_{\geq 1}+\sum_{i=1}^m \mathfrak{q}_i\partial^{-1}\mathfrak{r}_i\partial$. Next the relation with the Toda reduction $\mathcal{L}_1(n)^M=\mathcal{L}_2(n)^{N}+\sum_{l\in \mathbb{Z}}\sum_{i=1}^{m}\tilde{q}_{i,n}Î^l\tilde{r}_{i,n}$ is discussed. Finally we give equivalent formulations of the Toda and mToda reductions in terms of tau functions.
Jinbiao Wang、Wenchuang Guan、Mengyao Chen、Jipeng Cheng
数学物理学
Jinbiao Wang,Wenchuang Guan,Mengyao Chen,Jipeng Cheng.One reduction of the modified Toda hierarchy[EB/OL].(2025-07-24)[2025-08-10].https://arxiv.org/abs/2507.18271.点此复制
评论