|国家预印本平台
首页|The norms for symmetric and antisymmetric tensor products of the weighted shift operators

The norms for symmetric and antisymmetric tensor products of the weighted shift operators

The norms for symmetric and antisymmetric tensor products of the weighted shift operators

来源:Arxiv_logoArxiv
英文摘要

In the present paper, we study the norms for symmetric and antisymmetric tensor products of weighted shift operators. By proving that for $n\geq 2$, $$\|S_α^{l_1}\odot\cdots \odot S_α^{l_k}\odot S_α^{*l_{k+1}}\odot\cdots \odot S_α^{*l_{n}}\| =\mathop{\prod}_{i=1}^n\left \| S_α^{l_{i}}\right\|, \text{ for any} \ (l_1,l_2\cdots l_n)\in\mathbb N^n$$ if and only if the weight satisfies the regularity condition, we partially solve \cite[Problem 6 and Problem 7]{GA}. It will be seen that most weighted shift operators on function spaces, including weighted Bergman shift, Hardy shift, Dirichlet shift, etc, satisfy the regularity condition. Moreover, at the end of the paper, we solve \cite[Problem 1 and Problem 2]{GA}.

Xiance Tian、Penghui Wang、Zeyou Zhu

数学

Xiance Tian,Penghui Wang,Zeyou Zhu.The norms for symmetric and antisymmetric tensor products of the weighted shift operators[EB/OL].(2025-07-23)[2025-08-10].https://arxiv.org/abs/2507.17181.点此复制

评论