|国家预印本平台
首页|Integrable discretisations of the noncommutative NLS equation

Integrable discretisations of the noncommutative NLS equation

Integrable discretisations of the noncommutative NLS equation

来源:Arxiv_logoArxiv
英文摘要

We show how to derive noncommutative versions of integrable partial difference equations using Darboux transformations. As an illustrative example, we use the nonlinear Schrödinger (NLS) system. We derive a noncommutative nonlinear Schrödinger equation and we construct its integrable discretisations via the compatibility condition of Darboux transformations around the square. In particular, we construct a noncommutative Adler--Yamilov type system and a noncommutative discrete Toda equation. For the noncommutative Adler--Yamilov type system we construct Bäcklund transformations.

S. Konstantinou-Rizos、P. Xenitidis

物理学

S. Konstantinou-Rizos,P. Xenitidis.Integrable discretisations of the noncommutative NLS equation[EB/OL].(2025-07-15)[2025-08-10].https://arxiv.org/abs/2507.11670.点此复制

评论