Equivariant machine learning of Electric Field Gradients -- Predicting the quadrupolar coupling constant in the MAPbI$_3$ phase transition
Equivariant machine learning of Electric Field Gradients -- Predicting the quadrupolar coupling constant in the MAPbI$_3$ phase transition
We present a strategy combining machine learning and first-principles calculations to achieve highly accurate nuclear quadrupolar coupling constant predictions. Our approach employs two distinct machine-learning frameworks: a machine-learned force field to generate molecular dynamics trajectories and a second model for electric field gradients that preserves rotational and translational symmetries. By incorporating thermostat-driven molecular dynamics sampling, we enable the prediction of quadrupolar coupling constants in highly disordered materials at finite temperatures. We validate our method by predicting the tetragonal-to-cubic phase transition temperature of the organic-inorganic halide perovskite MAPbI$_3$, obtaining results that closely match experimental data.
Bernhard Schmiedmayer、J. W. Wolffs、Gilles A. de Wijs、Arno P. M. Kentgens、Jonathan Lahnsteiner、Georg Kresse
物理学晶体学
Bernhard Schmiedmayer,J. W. Wolffs,Gilles A. de Wijs,Arno P. M. Kentgens,Jonathan Lahnsteiner,Georg Kresse.Equivariant machine learning of Electric Field Gradients -- Predicting the quadrupolar coupling constant in the MAPbI$_3$ phase transition[EB/OL].(2025-07-25)[2025-08-10].https://arxiv.org/abs/2507.19435.点此复制
评论