Characteristic numbers of algebras
Characteristic numbers of algebras
We introduce characteristic numbers of a finite commutative unital $\mathbb{C}$-algebra, which are numerical invariants arising from algebraic intersection theory. We characterize Gorenstein and local complete intersection algebras in terms of their characteristic numbers. We compute characteristic numbers for certain families of algebras. We show that characteristic numbers are constant on $\mathrm{Hilb}_d(\mathbb{A}^1)$, provide an explicit upper bound for characteristic numbers on the smoothable component of $\mathrm{Hilb}_d(\mathbb{A}^n)$ and an explicit lower bound for characteristic numbers on the Gorenstein locus of $\mathrm{Hilb}_d(\mathbb{A}^n)$ for $n \geq d-2$.
Jakub Jagiełła、Paweł Pielasa、Anatoli Shatsila
数学
Jakub Jagiełła,Paweł Pielasa,Anatoli Shatsila.Characteristic numbers of algebras[EB/OL].(2025-07-25)[2025-08-10].https://arxiv.org/abs/2507.19587.点此复制
评论