|国家预印本平台
首页|Optimizing Federated Learning Configurations for MRI Prostate Segmentation and Cancer Detection: A Simulation Study

Optimizing Federated Learning Configurations for MRI Prostate Segmentation and Cancer Detection: A Simulation Study

Optimizing Federated Learning Configurations for MRI Prostate Segmentation and Cancer Detection: A Simulation Study

来源:Arxiv_logoArxiv
英文摘要

Purpose: To develop and optimize a federated learning (FL) framework across multiple clients for biparametric MRI prostate segmentation and clinically significant prostate cancer (csPCa) detection. Materials and Methods: A retrospective study was conducted using Flower FL to train a nnU-Net-based architecture for MRI prostate segmentation and csPCa detection, using data collected from January 2010 to August 2021. Model development included training and optimizing local epochs, federated rounds, and aggregation strategies for FL-based prostate segmentation on T2-weighted MRIs (four clients, 1294 patients) and csPCa detection using biparametric MRIs (three clients, 1440 patients). Performance was evaluated on independent test sets using the Dice score for segmentation and the Prostate Imaging: Cancer Artificial Intelligence (PI-CAI) score, defined as the average of the area under the receiver operating characteristic curve and average precision, for csPCa detection. P-values for performance differences were calculated using permutation testing. Results: The FL configurations were independently optimized for both tasks, showing improved performance at 1 epoch 300 rounds using FedMedian for prostate segmentation and 5 epochs 200 rounds using FedAdagrad, for csPCa detection. Compared with the average performance of the clients, the optimized FL model significantly improved performance in prostate segmentation and csPCa detection on the independent test set. The optimized FL model showed higher lesion detection performance compared to the FL-baseline model, but no evidence of a difference was observed for prostate segmentation. Conclusions: FL enhanced the performance and generalizability of MRI prostate segmentation and csPCa detection compared with local models, and optimizing its configuration further improved lesion detection performance.

Ashkan Moradi、Fadila Zerka、Joeran S. Bosma、Mohammed R. S. Sunoqrot、Bendik S. Abrahamsen、Derya Yakar、Jeroen Geerdink、Henkjan Huisman、Tone Frost Bathen、Mattijs Elschot

10.1148/ryai.240485

医学现状、医学发展医学研究方法肿瘤学

Ashkan Moradi,Fadila Zerka,Joeran S. Bosma,Mohammed R. S. Sunoqrot,Bendik S. Abrahamsen,Derya Yakar,Jeroen Geerdink,Henkjan Huisman,Tone Frost Bathen,Mattijs Elschot.Optimizing Federated Learning Configurations for MRI Prostate Segmentation and Cancer Detection: A Simulation Study[EB/OL].(2025-07-31)[2025-08-06].https://arxiv.org/abs/2507.22790.点此复制

评论