|国家预印本平台
首页|Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning

Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning

Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning

来源:Arxiv_logoArxiv
英文摘要

Quantum Support Vector Machines face scalability challenges due to high-dimensional quantum states and hardware limitations. We propose an embedding-aware quantum-classical pipeline combining class-balanced k-means distillation with pretrained Vision Transformer embeddings. Our key finding: ViT embeddings uniquely enable quantum advantage, achieving up to 8.02% accuracy improvements over classical SVMs on Fashion-MNIST and 4.42% on MNIST, while CNN features show performance degradation. Using 16-qubit tensor network simulation via cuTensorNet, we provide the first systematic evidence that quantum kernel advantage depends critically on embedding choice, revealing fundamental synergy between transformer attention and quantum feature spaces. This provides a practical pathway for scalable quantum machine learning that leverages modern neural architectures.

Sebastián Andrés Cajas Ordóñez、Luis Fernando Torres Torres、Mario Bifulco、Carlos Andrés Durán、Cristian Bosch、Ricardo Simón Carbajo

计算技术、计算机技术

Sebastián Andrés Cajas Ordóñez,Luis Fernando Torres Torres,Mario Bifulco,Carlos Andrés Durán,Cristian Bosch,Ricardo Simón Carbajo.Embedding-Aware Quantum-Classical SVMs for Scalable Quantum Machine Learning[EB/OL].(2025-07-28)[2025-08-11].https://arxiv.org/abs/2508.00024.点此复制

评论