Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
The Rate of Penetration (ROP) is crucial for optimizing drilling operations; however, accurately predicting it is hindered by the complex, dynamic, and high-dimensional nature of drilling data. Traditional empirical, physics-based, and basic machine learning models often fail to capture intricate temporal and contextual relationships, resulting in suboptimal predictions and limited real-time utility. To address this gap, we propose a novel hybrid deep learning architecture integrating Long Short-Term Memory (LSTM) networks, Transformer encoders, Time-Series Mixer (TS-Mixer) blocks, and attention mechanisms to synergistically model temporal dependencies, static feature interactions, global context, and dynamic feature importance. Evaluated on a real-world drilling dataset, our model outperformed benchmarks (standalone LSTM, TS-Mixer, and simpler hybrids) with an R-squared score of 0.9988 and a Mean Absolute Percentage Error of 1.447%, as measured by standard regression metrics (R-squared, MAE, RMSE, MAPE). Model interpretability was ensured using SHAP and LIME, while actual vs. predicted curves and bias checks confirmed accuracy and fairness across scenarios. This advanced hybrid approach enables reliable real-time ROP prediction, paving the way for intelligent, cost-effective drilling optimization systems with significant operational impact.
Saddam Hussain Khan
钻井工程
Saddam Hussain Khan.Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction[EB/OL].(2025-08-07)[2025-08-18].https://arxiv.org/abs/2508.05210.点此复制
评论