A Generalisation of Niven's Theorem for Trigonometric Functions
A Generalisation of Niven's Theorem for Trigonometric Functions
Niven's Theorem asserts that $\{\cos(rÏ)|r\in \mathbb{Q}\}\cap\mathbb{Q} = \{0, \pm 1, \pm\frac{1}{2}\}$. This paper uses elementary methods to classify all elements in the sets $\{\cos^n(rÏ)|r\in \mathbb{Q}, n \in \mathbb{N}\}\cap\mathbb{Q}$ and $\{\sin^n(rÏ)|r\in \mathbb{Q}, n \in \mathbb{N}\}\cap\mathbb{Q}$. Using some algebraic number theory, we extend this to a classification of all elements in $\{\tan^n(rÏ)|r\in \mathbb{Q}, n \in \mathbb{N}\}\cap\mathbb{Q}$. Finally, we present a short Galois theoretic argument to provide a more conceptual understanding of the results.
Ailbhe Ní Ruairí、Adam Keilthy
数学
Ailbhe Ní Ruairí,Adam Keilthy.A Generalisation of Niven's Theorem for Trigonometric Functions[EB/OL].(2025-08-08)[2025-08-24].https://arxiv.org/abs/2508.06415.点此复制
评论