Surgical Knowledge Rewrite in Compact LLMs: An 'Unlearn-then-Learn' Strategy with ($IA^3$) for Localized Factual Modulation and Catastrophic Forgetting Mitigation
Surgical Knowledge Rewrite in Compact LLMs: An 'Unlearn-then-Learn' Strategy with ($IA^3$) for Localized Factual Modulation and Catastrophic Forgetting Mitigation
Large Language Models (LLMs) struggle with dynamic knowledge updates, especially when new information conflicts with deeply embedded facts. Such conflicting factual edits often lead to two critical issues: resistance to adopting the new fact and severe catastrophic forgetting of unrelated knowledge. This paper introduces and evaluates a novel "unlearn-then-learn" strategy for precise knowledge editing in LLMs, leveraging the parameter-efficient fine-tuning (PEFT) technique, Infused Adapter by Inhibiting and Amplifying Inner Activations ($IA^3$). Crucially, this two-stage approach is powered by an initial circuit localization phase that identifies and targets the specific internal components responsible for encoding the conflicting fact. Through a rigorous experimental methodology on microsoft/Phi-3-mini-4k-instruct, we demonstrate that this mechanistically informed two-stage approach achieves near-perfect accuracy (98.50%) for the new, modulated fact while simultaneously effectively suppressing the original conflicting fact (96.00% forget rate). Critically, our strategy exhibits unprecedented localization (72.00% F_control accuracy), dramatically mitigating catastrophic forgetting observed in direct fine-tuning approaches (which showed as low as ~20% F_control accuracy), a direct benefit of our targeted interpretability-guided intervention. Furthermore, qualitative analysis reveals a nuanced mechanism of "soft forgetting," where original knowledge is suppressed from default retrieval but remains latent and conditionally accessible, enhancing model safety and control. These findings represent a significant advancement towards precise, localized, and safe knowledge management in compact LLMs.
Stanley Ngugi
计算技术、计算机技术
Stanley Ngugi.Surgical Knowledge Rewrite in Compact LLMs: An 'Unlearn-then-Learn' Strategy with ($IA^3$) for Localized Factual Modulation and Catastrophic Forgetting Mitigation[EB/OL].(2025-08-09)[2025-08-24].https://arxiv.org/abs/2508.07075.点此复制
评论