Construction and Characterization of Oscillatory Chain Sequences
Construction and Characterization of Oscillatory Chain Sequences
This paper initiates a theoretical investigation of $\frac{1}{4}$-oscillatory chain sequences $\{a_n\}$, generalizing Szwarc's classical framework for non-oscillatory chains \cite{Sz94, Sz98, Sz02, Sz03} to sequences fluctuating around $\frac{1}{4}$. We prove the existence of a fixed point for the critical map $f(x)=1-\frac{1}{4x}$ and establish convergence properties linking oscillatory behavior to parameter sequences $\{g_n\}$. A complete characterization is provided via a necessary and sufficient condition, exemplified by explicit solutions $a_n=\frac{1}{4}\left(1+(-1)^{n}\varepsilon_{n}\right)$. Crucially, we construct oscillatory chain sequences for which the series $\sum_{n=1}^{\infty} \left(a_n - \frac{1}{4}\right)$ diverges, thus violating Chihara's conjectured bound.
Zejun Dai、Daxiong Piao、Jinglai Qiao
数学
Zejun Dai,Daxiong Piao,Jinglai Qiao.Construction and Characterization of Oscillatory Chain Sequences[EB/OL].(2025-08-11)[2025-08-24].https://arxiv.org/abs/2508.07653.点此复制
评论