|国家预印本平台
首页|Quasilinear elliptic equations with singular quadratic growth terms

Quasilinear elliptic equations with singular quadratic growth terms

Quasilinear elliptic equations with singular quadratic growth terms

来源:Arxiv_logoArxiv
英文摘要

In this paper we deal with positive solutions for singular quasilinear problems whose model is $$ \begin{cases} -Δu + \frac{|\nabla u|^2}{(1-u)^γ}=g & \mbox{in $Ω$,}\newline \hfill u=0 \hfill & \mbox{on $\partialΩ$,} \end{cases} $$ where $Ω$ is a bounded open set of $\mathbb{R}^N$, $g\geq 0 $ is a function in some Lebesgue space, and $γ>0$. We prove both existence and nonexistence of solutions depending on the value of $γ$ and on the size of $g$.

Lucio Boccardo、Tommaso Leonori、Luigi Orsina、Francesco Petitta

10.1142/S0219199711004300

数学

Lucio Boccardo,Tommaso Leonori,Luigi Orsina,Francesco Petitta.Quasilinear elliptic equations with singular quadratic growth terms[EB/OL].(2025-08-11)[2025-08-24].https://arxiv.org/abs/2508.07695.点此复制

评论