Quasilinear elliptic equations with singular quadratic growth terms
Quasilinear elliptic equations with singular quadratic growth terms
In this paper we deal with positive solutions for singular quasilinear problems whose model is $$ \begin{cases} -Îu + \frac{|\nabla u|^2}{(1-u)^γ}=g & \mbox{in $Ω$,}\newline \hfill u=0 \hfill & \mbox{on $\partialΩ$,} \end{cases} $$ where $Ω$ is a bounded open set of $\mathbb{R}^N$, $g\geq 0 $ is a function in some Lebesgue space, and $γ>0$. We prove both existence and nonexistence of solutions depending on the value of $γ$ and on the size of $g$.
Lucio Boccardo、Tommaso Leonori、Luigi Orsina、Francesco Petitta
数学
Lucio Boccardo,Tommaso Leonori,Luigi Orsina,Francesco Petitta.Quasilinear elliptic equations with singular quadratic growth terms[EB/OL].(2025-08-11)[2025-08-24].https://arxiv.org/abs/2508.07695.点此复制
评论