Wildest $\mathrm{SL}_2$-tilings
Wildest $\mathrm{SL}_2$-tilings
Tame SL$_2$-tilings are related to Farey graph and friezes; much less is known about wild (not tame) SL$_2$-tilings. In this note, we demonstrate SL$_2$-tilings that are maximally wild: we prove that the maximum wild density of an integer SL$_2$-tiling is $\tfrac25$ and present SL$_2$-tilings over $\mathbb{Z}/N\mathbb{Z}$ with wild density 1.
Andrei Zabolotskii
数学
Andrei Zabolotskii.Wildest $\mathrm{SL}_2$-tilings[EB/OL].(2025-08-13)[2025-08-31].https://arxiv.org/abs/2508.09773.点此复制
评论