|国家预印本平台
首页|The radio flare and multi-wavelength afterglow of the short GRB 231117A: energy injection from a violent shell collision

The radio flare and multi-wavelength afterglow of the short GRB 231117A: energy injection from a violent shell collision

The radio flare and multi-wavelength afterglow of the short GRB 231117A: energy injection from a violent shell collision

来源:Arxiv_logoArxiv
英文摘要

We present the early radio detection and multi-wavelength modeling of the short gamma-ray burst (GRB) 231117A at redshift $z=0.257$. The Australia Telescope Compact Array automatically triggered a 9-hour observation of GRB 231117A at 5.5 and 9 GHz following its detection by the Neil Gehrels Swift Observatory just 1.3 hours post-burst. Splitting this observation into 1-hour time bins, the early radio afterglow exhibited flaring, scintillating and plateau phases. The scintillation allowed us to place the earliest upper limit ($<10$ hours) on the size of a GRB blast wave to date, constraining it to $<1\times10^{16}$ cm. Multi-wavelength modeling of the full afterglow required a period of significant energy injection between $\sim 0.02$ and $1$ day. The energy injection was modeled as a violent collision of two shells: a reverse shock passing through the injection shell explains the early radio plateau, while an X-ray flare is consistent with a shock passing through the leading impulsive shell. Beyond 1 day, the blast wave evolves as a classic decelerating forward shock with an electron distribution index of $p=1.66\pm0.01$. Our model also indicates a jet-break at $\sim2$ days, and a half-opening angle of $θ_j=16\mathring{.}6 \pm 1\mathring{.}1$. Following the period of injection, the total energy is $ζ\sim18$ times the initial impulsive energy, with a final collimation-corrected energy of $E_{\mathrm{Kf}}\sim5.7\times10^{49}$ erg. The minimum Lorentz factors this model requires are consistent with constraints from the early radio measurements of $Γ>35$ to $Γ>5$ between $\sim0.1$ and $1$ day. These results demonstrate the importance of rapid and sensitive radio follow-up of GRBs for exploring their central engines and outflow behaviour.

C. C. Thoene、N. R. Tanvir、S. D. Vergani、I. Worssam、G. E. Anderson、G. P. Lamb、B. P. Gompertz、L. Rhodes、A. Martin-Carrillo、A. J. van der Horst、A. Rowlinson、M. E. Bell、T. -W. Chen、H. M. Fausey、M. Ferro、P. J. Hancock、S. R. Oates、S. Schulze、R. L. C. Starling、S. Yang、K. Ackley、J. P. Anderson、A. Andersson、J. F. Agüí Fernández、R. Brivio、E. Burns、K. C. Chambers、T. de Boer、V. D'Elia、M. De Pasquale、A. de Ugarte Postigo、Dimple、R. Fender、M. D. Fulton、H. Gao、J. H. Gillanders、D. A. Green、M. Gromadzki、A. Gulati、D. H. Hartmann、M. E. Huber、N. P. M. Kuin、J. K. Leung、A. J. Levan、C. -C. Lin、E. Magnier、D. B. Malesani、P. Minguez、K. P. Mooley、T. Mukherjee、M. Nicholl、P. T. O'Brien、G. Pugliese、A. Rossi、S. D. Ryder、B. Sbarufatti、B. Schneider、F. Schüssler、S. J. Smartt、K. W. Smith、S. Srivastav、D. Steeghs、R. J. Wainscoat、Z. -N. Wang、R. A. M. J. Wijers、D. Williams-Baldwin、T. Zafar

天文学

C. C. Thoene,N. R. Tanvir,S. D. Vergani,I. Worssam,G. E. Anderson,G. P. Lamb,B. P. Gompertz,L. Rhodes,A. Martin-Carrillo,A. J. van der Horst,A. Rowlinson,M. E. Bell,T. -W. Chen,H. M. Fausey,M. Ferro,P. J. Hancock,S. R. Oates,S. Schulze,R. L. C. Starling,S. Yang,K. Ackley,J. P. Anderson,A. Andersson,J. F. Agüí Fernández,R. Brivio,E. Burns,K. C. Chambers,T. de Boer,V. D'Elia,M. De Pasquale,A. de Ugarte Postigo,Dimple,R. Fender,M. D. Fulton,H. Gao,J. H. Gillanders,D. A. Green,M. Gromadzki,A. Gulati,D. H. Hartmann,M. E. Huber,N. P. M. Kuin,J. K. Leung,A. J. Levan,C. -C. Lin,E. Magnier,D. B. Malesani,P. Minguez,K. P. Mooley,T. Mukherjee,M. Nicholl,P. T. O'Brien,G. Pugliese,A. Rossi,S. D. Ryder,B. Sbarufatti,B. Schneider,F. Schüssler,S. J. Smartt,K. W. Smith,S. Srivastav,D. Steeghs,R. J. Wainscoat,Z. -N. Wang,R. A. M. J. Wijers,D. Williams-Baldwin,T. Zafar.The radio flare and multi-wavelength afterglow of the short GRB 231117A: energy injection from a violent shell collision[EB/OL].(2025-08-20)[2025-09-02].https://arxiv.org/abs/2508.14650.点此复制

评论