On the maximal displacement of subcritical branching random walks with or without killing
On the maximal displacement of subcritical branching random walks with or without killing
Consider a subcritical branching random walk $\{Z_k\}_{k\geq 0}$ with offspring distribution $\{p_k\}_{k\geq 0}$ and step size $X$. Let $M_n$ denote the rightmost position reached by $\{Z_k\}_{k\geq 0}$ up to generation $n$, and define $M := \sup_{n\geq 0} M_n$. In this paper we give asymptotics of tail probability of $M$ under optimal assumptions $\sum^{\infty}_{k=1}(k\log k) p_k<\infty$ and $\mathbb{E}[Xe^{γX}]<\infty$, where $γ>0$ is a constant such that $\mathbb{E}[e^{γX}]=\frac{1}{m}$ and $m=\sum_{k=0}^\infty kp_k\in (0,1)$. Moreover, we confirm the conjecture of Neuman and Zheng [Probab. Theory Related Fields. 167 (2017) 1137--1164] by establishing the existence of a critical value $m\mathbb{E}[X e^{γX}]$ such that \begin{align*} \lim_{n\to\infty}e^{γcn}\mathbb{P}(M_n\geq cn)= \left\{ \begin{aligned} &κ\in(0,1], &c\in\big(0,m\mathbb{E}[Xe^{γX}]\big); &0, &c\in\big(m\mathbb{E}[Xe^{γX}],\infty\big), \end{aligned} \right. \end{align*} where $κ$ represents the non-zero limit. Finally, we extend these results to the maximal displacement of branching random walks with killing. Interestingly, this limit can be characterized through both the global minimum of a random walk with positive drift and the maximal displacement of the branching random walk without killing.
Haojie Hou、Shuxiong Zhang
数学
Haojie Hou,Shuxiong Zhang.On the maximal displacement of subcritical branching random walks with or without killing[EB/OL].(2025-08-21)[2025-09-09].https://arxiv.org/abs/2508.15156.点此复制
评论